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1 Introduction

The design of monetary policy in a globalized world has been a question of first-order im-

portance. The vast open economy New Keynesian (NK) literature has typically conducted

analyses based on the assumption of rational expectations (RE). However, there is growing

consensus on widespread bounded rationality in economic agents’ decision-making. In partic-

ular, various survey data and laboratory experiments find that forward-looking expectation

formations of private sectors show substantial deviations from the RE. Then, how monetary

policy should behave according to non-RE is a question of interest that requires a theoretical

structure beyond the RE benchmark.

Investigating the macroeconomic consequences of agents without the RE has become

an important research area in macroeconomic theory. One of the critical developments

in the research area is introduced in Hansen and Sargent (2001) and Hansen and Sargent

(2008), which formulates the departure of the model from the RE benchmark as an unknown

probabilistic feature of uncertainty, motivated by the concept of ambiguity in Gilboa and

Schmeidler (1989). Under the potential threat of a malevolent probabilistic environment

under uncertainty about the model, decision-makers employ a robust control – the minimax

optimization procedure – to minimize the worst-case outcome. Woodford (2010) and Adam

and Woodford (2012) develop the idea further to design robustly optimal monetary policy in

a standard closed-economy NK model, but private agents exhibit near-rational expectations

(NRE). The NRE is potentially distorted from the RE with a given radius of relative entropy.

In this paper, we study the robustly optimal monetary policy in an open economy context.

We start from the standard small open economy NK model as in Gali and Monacelli (2005).

There are two types of goods in the economy: domestically produced goods and imported

goods. Domestic producers use domestic labor as input and have the ability to set prices

only in the domestic currency. The prices are not readjusted in an NK fashion. There is a

trade of assets across countries in an international financial market. The model environment

is summarized as equations for domestic aggregate demand and supply and equations for

international prices and quantities. We extend the model environment as follows. We assume

that the private agents exhibit NRE, and the central bank is the planner, who aims to

maximize the private agents’ welfare in a paternalistic fashion, but with a concern about the

NRE. In addition, we assume the aggregate supply equation is shifted by cost-push shock,

which creates non-trivial policy trade-offs between stabilizing inflation and the output gap.

When we solve the problem of robustly optimal monetary policy, we find that as the

central bank has more concerns about the NRE, the robustly optimal monetary policy be-

comes more history-dependent in stabilizing inflation of domestically produced goods. When

a cost-push shock hits the economy, the robustly optimal monetary policy demands a more

sluggish reaction of domestic inflation as the central bank’s concerns about the NRE in-
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crease. In contrast, there is a more aggressive initial response of the nominal devaluation

rate as a result of the optimal trade-offs between domestic inflation and the output gap. In

addition, the optimal dynamics of the economy differ as the central bank’s concerns about

the NRE increase.

We estimate robustly optimal monetary policy models using time series data on CPI

inflation rates and nominal devaluation rates for Canada and Mexico. We construct an

algorithm to estimate the model via the likelihood-based Bayesian method. We find that

there are significant differences between the estimated NRE models in the two countries. The

NRE model shows minor deviations from the RE benchmark in Canada, whereas the NRE

model in Mexico shows substantial deviations from its RE benchmark. More interestingly,

the NRE model in Mexico successfully predicts the actual path of the monetary policy rate

in the data, while the RE model fails. The central insight from the result is that the NRE

model for Mexico successfully matches the key moments of the CPI inflation rate, which

combines domestic inflation and exchange rate pass-through. In the estimated NRE model,

the substantial deviation from the RE model motivates the central bank to adopt a more

history-dependent monetary policy. The policy generates a large devaluation driven by the

cost-push shock during the Mexican Peso Crisis, which results in high persistence in the

dynamics of the CPI inflation. On the other hand, the estimated RE model has a limited

ability to generate large devaluation as a policy outcome. The RE model predicts that

the nominal devaluation during the Peso Crisis is mainly driven by the sharp rise of the

domestic TFP shock, which is at odds with the fact that the crisis was not associated with

technological progress.

To the best of our knowledge, this paper is the first to study the robustly optimal mon-

etary policy in an open economy where the policymaker deals with private agents’ NRE.1

There is a vast body of work investigating robust monetary policy in a closed-economy New

Keynesian environment (see, for example, Walsh (2004), Leitemo and Soderstrom (2008b),

Dennis (2010), Levine and Pearlman (2010), Gerke and Hammermann (2016), and many

others). There are also several related works on open-economy environments (see, for exam-

ple, Dennis et al. (2009) and Leitemo and Soderstrom (2008a)). However, in these works,

the optimization problem is typically based on the policymaker’s doubts of her own model.

Instead, we follow Woodford (2010) and Adam and Woodford (2012) to consider the type of

1As discussed in Hansen and Sargent (2012), there are three types of ambiguity in the problem of a
policymaker facing ambiguity. Type-1 ambiguity is the case where the policymaker doubts both the exoge-
nous shock processes and private agents’ expectations. Type-2 ambiguity is the case where the policymaker
doubts the model of the exogenous shock processes, whereas private agents fully trust the model. Finally,
type-3 ambiguity is the case where the policymaker fully trusts the model of the exogenous shock processes,
but it does not have full confidence in private agents’ expectations. The type of ambiguity in our paper
is type-3. Hansen and Sargent (2012) and Kwon and Miao (2017) consider the robustly optimal monetary
policy problems under type-3 ambiguity, but their applications are closed-economy cases.
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ambiguity under which the policymaker trusts the model of the exogenous shock processes,

but it does not have full confidence in private agents’ expectations. There is a lack of knowl-

edge about the features of the robustly optimal monetary policy in an open economy in this

case, and this paper attempts to fill this gap.

Furthermore, this paper measures the deviation from the RE benchmark by estimating

the degree of NRE. Several papers estimate the deviation in various environments of bound-

edly rational agents. Ilut and Schneider (2014) apply the Bayesian method to estimate the

household’s ambiguity aversion, whereas the monetary policy follows the standard Taylor

rule. Bhandari et al. (2019) estimate private agents’ time-varying subjective beliefs by us-

ing survey data. Gust et al. (2020) apply the Bayesian method to estimate the averaged

planning horizon of a New Keynesian environment with agents of limited foresight. Note

that the information and policy structure of our paper differs essentially from these papers.

To the best of our knowledge, our paper is also the first attempt to estimate the degree of

the deviation from RE when the policymaker has Woodford (2010)’s type of ambiguity2.

The optimal monetary policy is assumed to have a conditionally linear form, which enables

us to summarize the model as a system of linear difference equations. Thus, we can ap-

ply standard techniques to estimate linear state-space models. However, the estimation of

the system of the equilibrium with robustly optimal policy is computationally demanding,

since the policy coefficients need to be computed for every draw in the Markov Chain in the

estimation procedure. We construct and execute the estimation algorithm.

The remainder of the paper is organized as follows. Section 2 describes a small open

economy model under near-rational private agents’ expectations and robustly optimal mon-

etary policy with commitment. Section 3 investigates the normative features of the robustly

optimal monetary policy. Section 4 estimates the models by using the Bayesian method and

discusses the key results. Section 5 concludes the paper.

2 Model

In this section, we incorporate the distorted expectations of private agents into the canonical

small open economy New Keynesian model of Gali and Monacelli (2005). As is common in

the New Keynesian literature, we further introduce a cost-push shock into the model and

consider robustly optimal monetary policy responses. We begin by describing the belief

structure of the private agents in the model.

2In such model environments, forecast errors from households’ and firms’ survey data cannot be used to
identify the central bank’s concerns regarding the private agents’ NRE in a model-consistent way.
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2.1 Uncertainty and Beliefs

The uncertainty of the economy is defined as the set of vectors of an exogenous stochastic

disturbance process {εt}∞t=0, where εt ≡ {ε0, ε1, ..., εt} is the history of periodic stochastic

disturbance εt,∀t ≥ 0 .

We assume the following information structure depicted in Woodford (2010) and Adam

and Woodford (2012). There is the probability triple (Ω,F ,P), where Ω is the sample

space, F is the σ-Field of the sample space, and P is the probability measure, defines the

probability space of the exogenous process. The benchmark expectation operator is denoted

by E[·], which is induced by measure P . This is the rational measure for the probability

of states of the economy. The private agents’ expectations, however, are not necessarily

rational in the sense that their expectation operator is induced by a potentially different

measure P̂ . We impose the restriction that the measure P̂ is absolutely continuous with

respect to the measure P . Let p(ε) denote the unconditional probability density of ε from

measure P , where ε is a dummy random vector with the same dimension as the number of

entries of εt. Let p̂ (ε|εt) denote the one-step-ahead probability density for εt+1, which is

induced by measure P̂ , conditioned on date-t information. The likelihood ratio between the

two densities is

mt+1 =
p̂ (ε|εt)
p(ε)

,

and mt+1 is nonnegative and

E
[
mt+1|εt

]
= 1. (1)

Following Hansen and Sargent (2008), we set M0 = 1 and recursively construct {Mt} such

that

Mt+1 = mt+1Mt,

which implies

Mt+j =

j∏
k=1

mt+k,

and it is a martingale process that satisfies

E[Mt+j|εt] =Mt.

The Radon-Nikodym theorem indicates that private agents’ expectation Ê[·] of a random

variable Xt+j induced by measure P̂ conditioned on date-t information can be expressed as
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the expectation induced by the measure P for the augmented random variable Xt+j:

Ê[Xt+j|εt] = E
[
Mt+j

Mt

Xt+j

∣∣∣εt] ,
where

Mt+j

Mt
represents the Radon-Nikodym derivatives, which completely summarize the

belief distortions. Then the one-step-ahead expectation of the random variable Xt+1 induced

by measure P̂ is expressed as follows:

Ê[Xt+1|εt] = E[mt+1Xt+1|εt].

Henceforth, we simply express an expectation based on date-t information as the expectation

with subscript t, i.e., ÊtXt+1 ≡ Ê[Xt+1|εt] and EtXt+1 ≡ E[Xt+1|εt].
We employ the relative entropy (Kullback-Leibler divergence) to measure the distance

between two probability measures P̂ and P . The distance of one-period-ahead distorted

beliefs from the rational belief is summarized by the following relative entropy:

Rt ≡ Etmt+1 lnmt+1,

which is always nonnegative by Gibb’s inequality.

In the next subsections, we use the operator Ê[·] to represent the private sector’s distorted

expectations.

2.2 A Small Open Economy NK Environment

Now, we consider a small open economy New Keynesian environment developed in Gali and

Monacelli (2005) and assume that the agents’ expectations are potentially distorted and that

a cost-push shock exists. The aggregate demand of the economy can be represented by the

following equation:

xt = Êtxt+1 −
1

σα

(
it − ÊtπH,t+1 − r̄rt

)
, (2)

where xt is the domestic output gap defined by the actual output minus the natural level of

output under flexible prices and πH,t is the net inflation rate for the domestically produced

good. The variable it is the monetary policy rate determined by the policymaker. The

parameter σα is defined as:

σα ≡
σ

1 + α(ω − 1)
,
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where σ > 0 governs the elasticity of intertemporal substitution in the private agents’ utility

functions, α ∈ [0, 1] governs the degree of home bias, and ω governs the effect of changes in

the terms of trade on output. The variable r̄rt is the natural rate of interest rate,

r̄rt = ρ+ Λr,aat + Λr,y∗y
∗
t , (3)

where at denotes the domestic productivity shock and y∗t is the world output shock. Pa-

rameter ρ = − log β, and Λr,a and Λr,y∗ are coefficients that are functions of the structural

parameters.

The aggregate supply of the economy is represented by the following equation:

πH,t = βÊtπH,t+1 + κxt + ut, (4)

where β ∈ (0, 1) refers to the subjective discount factor and ut is the cost-push shock that

shifts the aggregate supply curve. The parameter κ > 0 is defined as follows:

κ ≡ (1− ζ)(1− ζβ)(σα + ϕ)

ζ
,

where ζ is the Calvo-Yun parameter for nominal price rigidity and ϕ is the inverse of the

Frisch-elasticity of labor supply.

We define the bilateral terms of trade Si,t ≡ Pi,t
PH,t

as the ratio between the price of country

i’s good Pi,t (in terms of domestic currency) and the price of domestic goods PH,t. The

effective terms of trade is given by St ≡ PF,t
PH,t

, where PF,t is the price index of the imported

goods. The log of the effective terms of trade st is then expressed as st = pF,t − pH,t, where

pF,t and pH,t are the logs of PF,t and PH,t, respectively. Then the complete international

asset market and international risk-sharing condition of Gali and Monacelli (2005) implies

that the terms of trade st is expressed by the equation

st = σα(xt + ỹt − y∗t ), (5)

where ỹt is the natural level of domestic output,

ỹt = Λy,0 + Λy,aat + Λy,y∗y
∗
t , (6)

where Λy,0,Λy,a and Λy,y∗ are coefficients that are functions of the structural parameters (see

Table C.6 in Appendix C for detailed description of Λy,0,Λr,a,Λr,y∗ ,Λy,a, and Λy,y∗). The
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variable y∗t is an exogenous world output shock.

We assume that the law of one price holds for individual goods, for both the import

price and export price. The assumption results in the relation Pi,t = EitP i
i,t, where Eit is the

bilateral nominal exchange rate of the currency of country i in terms of domestic currency

and P i
i,t is the price of country i’s good in terms of country i’s own currency. Then the log

of the effective exchange rate between the domestic country and the rest of the world et is

approximated by et = pF,t − p∗t , where p∗t is the log of the effective price index of the rest

of the world. By combining this with the definition of the log of the terms of trade, the

nominal devaluation rate ∆et is then expressed by the accounting equation

∆et = πH,t + ∆st − π∗t , (7)

where ∆ is the first-order lagged difference operator and π∗t is the exogenous world inflation

rate. A positive (negative) ∆et means a nominal depreciation (appreciation) of the domestic

currency.

The three shocks described above are assumed to follow the following first-order Markov

processes:

ut+1 = ρuut + σuε
u
t+1, (8)

at+1 = ρaat + σaε
a
t+1, (9)

y∗t+1 = ρy∗y
∗
t + σy∗ε

y
t+1, (10)

where parameter ρi, i ∈ {a, u, y∗} governs the persistence, σi, i ∈ {a, u, y∗} governs the

standard deviation of each stochastic process, and εit+1, i ∈ {a, u, y∗} follows an i.i.d standard

normal distribution.

2.3 The Robustly Optimal Monetary Policy

Throughout this paper, we use the term ‘concerns about distorted expectations’ when we

refer to the central bank’s concerns regarding the potentially distorted expectations of private

agents. As the planner of the economy, the central bank conducts optimal monetary policy

by using the nominal interest rate it as the policy instrument. However, the optimal policy

problem differs from the standard optimal policy problem under the RE since the belief

structures of the central bank and private agents are heterogenous.

As in Woodford (2010), we focus on the case in which, unlike the private agents, the

central bank has the rational belief. Figure 1 illustrates the environment that features a
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Figure 1: Entropy Diagram

Relative EntropyThe model under rational beliefs
(Model of the Central Bank)

The models under potentially distorted beliefs
(Model of the private agent)

central bank and private agents with heterogeneous belief structures. In the figure, each

ball refers to a model with distinct beliefs. The blue ball refers to the central bank’s model,

and the orange balls refer to the set of private agents’ models. The set of private agents’

models with potentially distorted expectations are around the central bank’s model with RE,

with the distance reflecting the relative entropy. The private agents have no concerns about

their models when they make decisions. The central bank, to the contrary, is concerned

about the private agents’ potentially distorted expectations when it designs the optimal

monetary policy. However, the central bank does not have further information on the private

agents’ expectations beyond the fact that they are potentially distorted. The decision-making

environment under heterogeneous beliefs is consistent with the type-3 ambiguity aversion in

Hansen and Sargent (2012).

Under the belief structure, the central bank seeks to minimize the private agents’ welfare

loss with a paternalistic objective (the welfare loss under rational belief) and with ambi-

guity aversion, which is introduced in Woodford (2010) and Adam and Woodford (2012).

Specifically, the central bank’s welfare loss function of the economy can be written as follows:

L = E−1

∞∑
t=0

βt
1

2

(
π2
H,t + λx (xt − x̄)2)

︸ ︷︷ ︸
the term of paternalistic welfare loss

− θE−1

∞∑
t=0

βtmt+1 lnmt+1︸ ︷︷ ︸
the term of ambiguity aversion

,

where the first term in parentheses on the right-hand side represents the discounted lifetime

welfare loss of private agents under rational belief, which follows the welfare loss function in

Gali and Monacelli (2005). The second term represents the concerns about distorted expec-

tations. The parameter λx > 0 captures the weight of the welfare loss from the deviation

of the output gap from its target value, x̄, and θ ∈ (0,∞) is related to the central bank’s
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concerns about distorted expectations. The welfare loss is a convex function with respect to

πH,t, xt, but it is a concave function with respect to mt+1.

Given its concerns about distorted expectations, the central bank attempts to minimize

the welfare loss under the worst-case outcomes caused by the potentially distorted belief

mt+1. Following the framework of Woodford (2010), we assume that a hypothetically malev-

olent nature chooses {mt+1} to maximize the welfare loss, and given this, the policymaker

chooses the best responses of {πt, xt, it} to minimize the loss. We define the central bank’s

robustly optimal monetary policy problem as follows.

Definition 2.1 The robustly optimal monetary policy of the central bank is solving the fol-

lowing minimax optimization problem:

min
{πH,t,xt,it}

max
{mt+1}

E−1

∞∑
t=0

βt
1

2

(
π2
H,t + λx (xt − x̄)2)− θE−1

∞∑
t=0

βtmt+1 lnmt+1, (11)

subject to equations (1), (2), (3), (4), (8), (9), and (10).

Note that when θ → ∞, the optimal behavior for the malevolent nature to maximize

the welfare loss is to choose mt+1 = 1, which is the belief under the RE. When θ is a finite

number, on the other hand, the optimal choice of mt+1 causes a departure from the belief

under the RE. In this sense, higher θ−1 ∈ [0,∞) can be interpreted as a higher degree of

concerns about distorted expectations.

As a benevolent planner, the central bank commits to its past policy promises, which

implies a history-dependent policy. The robustly optimal monetary policy problem defined in

2.1 consists of choosing a sequence of potentially time-varying {πH,t, xt}∞t=0 which generally

creates nonlinearity in the system. Instead, we employ the conditionally linear and self-

consistent commitment policy developed in Woodford (2010) to maintain the linear system

under commitment. Under conditionally linear commitment, solving the problem reduces to

choosing a sequence of {πH,t, xt}∞t=1 while taking the initial commitment {πH,0, x0} as given.

We suppose that the initial commitment takes a linear form: πH,0

x0

 = Φ−1 + Γ−1ε0,

where Φ−1 ≡ [ΦπH ,−1,Φx,−1]′ and Γ−1 ≡ [ΓπH ,u,−1,ΓπH ,a,−1,ΓπH ,y∗,−1,Γx,u,−1,Γx,a,−1,Γx,y∗,−1]′
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complete an initial commitment. Then, we focus on the following conditionally linear rule: πH,t+1

xt+1

 = Φt + Γtεt+1, t ≥ 0, (12)

where Φt ≡ [ΦπH ,t,Φx,t]
′ is stochastic and Γt ≡ [ΓπH ,u,t,ΓπH ,a,t,ΓπH ,y∗,t,Γx,u,t,Γx,a,t,Γx,y∗,t]

′ is

deterministic. For any initial commitment {Φ−1,Γ−1}, the central bank chooses {Φt,Γt}∞t=0.

The initial commitment is self-consistent if

Φ−1
d
= Φt ∼ Φ, ∀t ≥ 0, (13)

Γ−1 = Γt = Γ, ∀t ≥ 0, (14)

which means that Φ−1 and {Φt}∞t=0 follow the same unconditional distribution, and Γ−1 and

{Γt}∞t=0 are the same deterministic matrices. As the initial commitment is self-consistent,

the policy with commitment becomes time-invariant.

To compute the equilibrium with the robustly optimal policy under the commitment

device, we follow the solution method in Kwon and Miao (2019), which generalizes the

Lagrangian game approach with conditionally linear policy commitment in Woodford (2010).

The system of equations for the linearized equilibrium can be rewritten in the following form: X t+1

ÊtY t+1

 = A

 X t

Y t

+Bit +Cεt+1 (15)

where X t ≡ [1, ut, at, y
∗
t ]
′

is a vector of exogenous variables, Y t ≡ [πH,t, xt]
′

is a vector

of domestic inflation and the output gap which are non-predetermined variables, it is the

nominal interest rate, which is the policy instrument, and εt+1 ≡ [εut+1, ε
a
t+1, ε

y
t+1]

′
is a vector

of shocks to the exogenous variables.

The minimax problem in (11) can be rewritten as the problem of choosing {Φt,Γt}t≥0,

{mt}t≥1, and {it}t≥0 for a given initial commitment (Φ−1,Γ−1). The Lagrangian of the

problem is given as follows:

L = E−1

∞∑
t=0

βt

{
1

2

(
π2
H,t + λx (xt − x̄)2)− θmt+1 lnmt+1 + φt(Etmt+1 − 1)
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+[µ′X,t+1,µ
′
Y,t]

 X t+1

Etmt+1Y t+1

−A
 X t

Y t

−Bit
−Cεt+1

}
,

where βtφt is the Lagrange multiplier for the constraint (1) and βt[µX,t+1,µY,t] are vectors

of the Lagrange multiplier for the system of equations (2), (3), (4), (8), (9), and (10).

Solving this problem consists of the following steps. First, the hypothetical malevolent

nature chooses mt+1 to maximize the loss, which gives the solution for the worst-case belief

mt+1. Next, the policymaker chooses {X t,Φt,Γt, it} after substituting for the chosen solution

of mt+1 in the Lagrangian. Since we are interested in self-consistent policy, we additionally

impose Γt = Γ. To obtain the solution for Γ, we start with a guess for Γ and solve the

first-order conditions except for the first-order condition for it. The solution is then used to

obtain a new value of Γ from the first-order condition for it. This process is repeated until

we obtain convergence in the value of Γ. We solve the resulting system of linear differential

equations by using Klein (2000)’s method. The solution of the system takes the following

state-space form of the law of motion of the state variables:
εt+1

X t+1

Φt

 = H


εt

X t

Φt−1

+


I

CX

0

 εt+1, (16)

the policy rules for the non-predetermined variables:
it

µY,t

µX,t

EtµX,t+1

 = G


εt

X t

Φt−1

 , (17)

and the distorted belief measure, distorted forward-looking expectation, and the relative

entropy in the worst-case scenario:

mt+1 = exp

(
−1

2
θ−2µ′Y,tΓΓ′µY,t + θ−1µ′Y,tΓεt+1

)
, (18)

Etmt+1Y t+1 = Φt + θ−1ΓΓ′µY,t, (19)

Etmt+1 lnmt+1 =
1

2
θ−2µ′Y,tΓΓ′µY,t. (20)

See Appendix A.1. for the entire procedure to solve the model.
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3 Normative Analyses of the Robustly Optimal Mon-

etary Policy

In this section, we investigate the normative features of the robustly optimal monetary policy.

Specifically, we investigate the optimal policy coefficient of the domestic inflation and the

output gap in equation (14), and impulse response functions of macroeconomic variables to

exogenous shocks, subject to various degrees of concerns about distorted expectations and

various structural parameters. Thereafter, we frequently use the acronym ‘RE’ when we refer

to the model under θ−1 = 0. First, we begin by claiming the following two propositions.

Proposition 3.1 For any θ ∈ R+, the robustly optimal policy calls for zero domestic infla-

tion and output gap in response to domestic productivity shock at and world output shock y∗t ,

i.e., ΓπH ,a = Γx,a = ΓπH ,y∗ = Γx,y∗ = 0.

Proposition 3.2 For any θ ∈ R+, Êtxt+1 = Etxt+1 in the equilibrium with the robustly

optimal monetary policy.

Proposition 3.1 implies that regardless of the central bank’s concerns about distorted

expectations, only the cost-push shock ut generates a non-trivial reaction of πH,t and xt in

the equilibrium with the robustly optimal policy. The intuition is that the natural interest

rate r̄rt in (3) compromises the two shocks. The shock in the natural interest rate shifts

the aggregate demand equation (2). It can be perfectly stabilized by the robustly optimal

policy regardless of the potentially distorted expectation. The insight is that there are no

trade-offs between stabilizing domestic inflation and the output gap. Thus, both can be

simultaneously stabilized, which is also known as the divine coincidence. Proposition 3.1

does not imply that the natural rate shocks do not affect the economy. The natural rate

shocks affect the natural level of domestic output ỹt. Thus they affect the dynamics of the

terms of trade and the nominal devaluation rate through equations (5) and (7). Figures C.14

- C.15 in Appendix C show the dynamic impulse response functions of the variables to the

natural rate shocks.

Proposition 3.2 implies that in the equilibrium, the distorted expectations of the private

agents that the central bank is concerned about is the expectation for domestic inflation,

ÊtπH,t+1. The intuition is the following. The facts that (i) the optimal policy can be deter-

mined without the aggregate demand equation (2) and (ii) the aggregate supply equation

(4) does not involve forward-looking expectations for the output gap motivate the central

bank not to be concerned about distorted expectations for the output gap.
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Based on the propositions, we focus in the next subsections on the robustly optimal

policy with concerns about distorted expectations for domestic inflation in response to the

cost-push shock.

3.1 Features of the Robustly Optimal Policy Coefficients

Figure 2 shows the robustly optimal policy coefficients under various degrees of concern about

distorted expectations θ−1 ∈ {0, 100, 500}, and its interaction with the standard deviations

of the cost-push shock σu ∈ [0, 0.05] and persistence of the shock ρu ∈ [0, 1). For the other

parameters, we set σ = 1, ω = 1, ϕ = 3, β = 0.99, ζ = 0.75, and α = 0.4 following the

benchmark calibration in Gali and Monacelli (2005).

The upper panels of the figure exhibit the optimal policy coefficients for domestic infla-

tion, ΓπH ,u. When θ−1 = 0, the private expectations are RE. In this case, for any given level

of persistence ρu, the policy coefficient ΓπH ,u is an increasing linear function of the standard

deviation of the cost-push shock, σu, which implies that the certainty equivalence is applied

in the optimal monetary policy.

If θ−1 > 0, however, then the central bank is concerned about the distorted expectations

of private agents. The central bank’s concern causes a breakdown of the certainty equivalence

principle in the optimal monetary policy, as discussed in Woodford (2010). For example,

when θ−1 = 100, ΓπH ,u is an increasing but concave function of σu, which implies that

the policy becomes more conservative than the policy under RE. This implies that as σu

increases, the central bank becomes more reluctant in responding to ΓπH ,u because of its

concerns about distorted expectations. Furthermore, as the persistence of the cost-push

shock ρu increases, the decrease in the rate of the increase in ΓπH ,u to σu increases, which

implies that the central bank becomes increasingly conservative in responding ΓπH ,u when

the persistence of the shock increases. Remarkably, when θ−1 = 500, ΓπH ,u begins to even

decrease above a certain point σu when ρu is sufficiently high. The central bank now decides

to decrease its response to ΓπH ,u given its serious concerns about distorted expectations.

The lower panels in Figure 2 exhibit the optimal policy coefficient for the response of the

output gap Γx,u in the models under θ−1 and its interaction with {σu, ρu}. The aggregate

supply equation (4) implies that given domestic inflation xH,t, the worst-case distorted ex-

pectation ÊtπH,t+1, and the shock ut, the equilibrium output gap xt is determined as follows:

xt =
πH,t − βÊtπH,t+1 − ut

κ
, (21)

which indicates that Γx,u depends on the gap between the current domestic inflation and

the distorted expectation for future inflation πH,t − βÊtπH,t+1, the cost-push shock ut, and
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Figure 2: Robustly Optimal Policy Coefficients Conditional on Various θ−1, σu, ρu

the slope of the aggregate supply curve κ. As in the case of ΓπH ,u, when θ−1 = 0, the

private expectations are RE. At any level of persistence ρu, Γx,u is a linear function of σu

since certainty equivalence is applied. In addition, the policy Γx,u is a decreasing function of

σu, since an increase in σu increases the size of ut when the shock occurs, and it negatively

affects xt by the aggregate supply relation (21).

When θ−1 > 0, in contrast, the concerns about distorted expectations arise. The coef-

ficient Γx,u is not a linear function of σu, and as ρu increases, Γx,u decreases further than

it decreases in the case of certainty equivalence. The mechanism is as follows. As we see

in the upper panels, as σu and ρu increase, the motivation for the conservative response of

ΓπH ,u becomes stronger. The motivation is to give a signal to private agents that the cen-

tral bank does not have plans to significantly change domestic inflation to maintain the gap

πH,t − βÊtπH,t+1 to a small and stable level. As ρu and σu increase, the central bank wants

to get πH,t− βÊtπH,t+1 increasingly smaller. With equation (21), these result in a larger de-

crease in Γx,u than in the case of RE. When θ−1 = 500, the pattern becomes quantitatively

stronger.

The upper panels in Figure 3 show the ΓπH ,u under θ−1 and its interaction with {ϕ, ρu}
(we fix σu = 0.02). When ϕ increases, the slope of the aggregate supply curve becomes

15



Figure 3: Robustly Optimal Policy Coefficients Conditional on Various θ−1, ϕ, ρu

steeper, which implies that the propagation effect of monetary policy becomes weaker. Thus

at all degrees of concerns about distorted expectations θ−1 and all levels of persistence of

the cost-push shock ρu, the policy coefficient ΓπH ,u exhibits a low response when ϕ is high.

When ϕ is small, i.e., the aggregate supply curve is flatter, the policy coefficient becomes

substantially different along with the concerns about distorted expectations. If θ−1 = 0, then

ΓπH ,u increases when ϕ decreases. Moreover, ΓπH ,u increases when ρu increases. This implies

that when the private expectations are RE, the optimal monetary policy calls for aggressive

monetary policy (higher ΓπH ,u) when the aggregate supply curve is flatter and when the cost-

push shock is more persistent. If θ−1 = 100, however, then ΓπH ,u begins to decrease when

ϕ becomes sufficiently small and ρu becomes sufficiently high. The pattern of the decrease

in ΓπH ,u becomes quantitatively stronger when θ−1 = 500. The results have the following

implications. Suppose that the cost-push shock is substantially persistent and that the

aggregate supply curve is substantially flat. In this case, the central bank decides to restrain

its actions and conducts conservative monetary policy concerning distorted expectations.

The lower panels in Figure 3 show Γx,u under the same variations of the parameters as

in the upper panels. As we observed in the upper panels, a higher ϕ yields a higher κ, which

increases the denominator of the right-hand side of equation . Thus, Γx,u uniformly increases
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Figure 4: Robustly Optimal Policy Coefficients Conditional on Various θ−1, ω, ρu

toward 0 when ϕ increases for any given ρu and θ−1. When θ−1 = 0 (RE), Γx,u decreases as

ρu increases for any given ϕ. The reason is because the gap πH,t−βEtπH,t+1 decreases when

the persistence of the shock increases, since the expected path of domestic inflation also has

a higher serial correlation. When θ−1 = 100, the gap πH,t − βÊtπH,t+1 becomes even smaller

because of the conservative response of the ΓπH ,u caused by the concerns about distorted

expectations. Thus Γx,u decreases more than the case of RE, when ρu increases. The pattern

becomes quantitatively stronger when θ−1 = 500.

The upper panels in Figure 4 show ΓπH ,u under θ−1 and its interaction with {ω, ρu} (we

fix σu = 0.02 and ϕ = 1). The parameter ω governs the slope of the aggregate demand curve

− 1
σα

, since σα ≡ σ
1+α(ω−1)

. A higher ω implies a steeper slope of the aggregate demand curve.

The parameter ω also affects the aggregate supply curve and the slope κα becomes flatter as ω

increases. Thus, an increase in ω strengthens the propagation effect of the monetary policy.

If θ−1 = 0 (RE), then ΓπH ,u increases when ω increases. If θ−1 = 100, then the increase

in ΓπH ,u becomes sluggish when ρu is sufficiently high. When θ−1 = 500, ΓπH ,u actually

decreases as ω increases if ρu is substantially persistent. The essential insight is similar to

the case in Figure 3. A steeper aggregate demand curve and a flatter aggregate supply curve

caused by a higher ω strengthen the effect of monetary policy. As there are concerns about
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distorted expectations, the central bank decides to conduct conservative monetary policy by

adopting a smaller ΓπH ,u than the one under RE.

The lower panels in Figure 4 show Γx,u under the same variations of the parameters

as in the upper panels. As the higher ω causes a flatter κ, the Γx,u uniformly decreases

when ω increases, for any given ρu and θ−1. When θ−1 = 0 (RE), at any fixed ω, the

Γx,u decreases as ρu increases. Similar to the previous case, the reason is because the gap

πH,t − βEtπH,t+1 decreases with the higher persistence of the shock. When θ−1 = 100, the

declining patterns become stronger because of the concerns about distorted expectations.

When ρu becomes higher, the decrease in Γx,u becomes more drastic than in the case of RE.

The reason is because the gap πH,t − βÊtπH,t+1 decreases as a consequence of the central

bank’s conservative monetary policy. The case of θ−1 = 500 strengthens the pattern.

3.2 Features of the Initial Response of the Nominal Devaluation

Rate

How does the robustly optimal monetary policy affect the nominal exchange rate? Using

the model solutions of {πH,t, xt, ỹt} and exogenous process y∗t , we obtain the solution for the

devaluation rate ∆et from (5) and (7) in the equilibrium.

Figure 5 shows the initial responses of the nominal devaluation rate ∆et at the time when

the cost-push shock occurs, in the models with θ−1 ∈ {0, 100, 500} and their interactions

with other various structural parameters. Here, we fix the other parameters for the panels

in (a), (b), and (c) to be the same as those in the cases of Figures 2, 3, and 4, respectively.

The panels in (a) exhibit the initial responses under various θ−1 and its interactions with

(σu, ρu). When θ−1 = 0 (RE), ∆et decreases (initial appreciation) as σu increases, at any

level of persistence ρu. When θ−1 = 100, the initial appreciation subject to the increase in

σu accelerates more than the initial appreciation under RE. When θ−1 = 500, the pattern

of the acceleration strengthens. Thus, the model shows a far larger initial appreciation than

the former two models. Moreover, the gaps of the initial response of ∆et between the models

with different degrees of distorted expectations become more dramatic when the shock is

more persistent. All three models with different θ−1 values show a larger initial appreciation

subject to σu when ρu is higher. However, the initial responses of ∆et in the model under

RE are quite proportional to σu, whereas when θ−1 > 0, they become exponential as σu

increases. The qualitative features of the initial responses are close to the features of the

robustly optimal policy coefficients of the output gap Γx,u in Figure 2. Equations (5) and

(7) imply that the response of ∆et to the cost-push shock is affected by the responses of πH,t

and σα∆xt, and the effect of ∆xt quantitatively dominates the effect of πH,t. As we can see

in Figure 2, the reasons are because |Γx,u| are quantitatively larger than |ΓπH ,u|, and ΓπH ,u
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Figure 5: Initial Responses of the Devaluation Rate to the Cost-Push Shock

(a) Conditional on Various θ−1, σu, ρu

(b) Conditional on Various θ−1, ϕ, ρu

(c) Conditional on Various θ−1, ω, ρu
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behaves sluggishly to an increase of σu when θ−1 > 0.

The panels in (b) show the responses under θ−1 and their interactions with (ϕ, σu). We

observe that as θ−1 increases, ϕ is smaller, and ρu is more persistent, there are more initial

appreciations. The initial responses of ∆et are similar to the policy coefficient Γx,u in Figure

3. The insight is similar to the case in the panels in (a). The panels in (c) show the

responses under θ−1 and its interaction with (ω, σu). Similar to the panels in (b), there are

more initial appreciations as θ−1 increases, ω is smaller, and ρu is more persistent. However,

the responses are quite different from the policy coefficient Γx,u in Figure 4, in which Γx,u does

not necessarily decrease when ω decreases. The reason is because σα ≡ σ
1+α(ω−1)

increases as

ω decreases. Thus, the impact of Γx,u on ∆et is amplified as ω decreases.

The results in Figure 5 indicate that the central bank’s conservative monetary policy

as a response to the concerns about distorted expectations causes a more aggressive initial

response of the nominal exchange rate. The general intuition can be summarized as follows.

The cost-push shock creates trade-offs between domestic inflation and the output gap in all

models. When θ−1 > 0, the initial response of the output gap becomes larger than that under

RE because of the sluggish response of domestic inflation. Since the nominal devaluation is

determined by equation (7), the movements of domestic inflation and the change of the terms

of trade both matter. Equation (5) indicates that the terms of trade is a linear function of

the output gap. The magnitude of the response of the output gap outweighs the response

of domestic inflation for a broad range of parameters, and the magnitude increases as θ−1

increases. Consequently, the nominal devaluation shows a larger initial response than that

under RE when θ−1 > 0.

3.3 Robustly Optimal Dynamics

In this subsection, we investigate the dynamic features of the equilibrium with the robustly

optimal monetary policy. We begin by claiming the following proposition.

Proposition 3.3 In the equilibrium with the robustly optimal monetary policy, the dynamics

of domestic inflation is determined by the following equation:

πH,t = ρπHπH,t−1 − ΓπH ,uε
u
t − ρπ(1− ρu)σu

∞∑
j=0

ρjuε
u
t−j−1, , (22)

where ρπH ∈ (0, 1) increases as θ−1 increases.

Proposition 3.3 means the following. As the central bank has more concerns about dis-

torted expectations, the coefficient ρπH increases toward one, so the current domestic inflation
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becomes more affected by past domestic inflation. In addition, if the cost-push shock has

nonzero persistence, then the current domestic inflation is more affected by the weighted

average of the history of past cost-push shocks as the central bank has more concerns about

distorted expectations. These actions imply that the rise of the central bank’s concerns

results in more history-dependent movements in domestic inflation than those in the ratio-

nal expectation benchmark. The result recalls the one reached in Woodford (2010) in the

closed-economy framework, and proposition 3.3 contains a more general result because of

the consideration of the shock persistency.

Figure 6 shows the dynamic impulse response functions of domestic inflation, the (worst-

case) private expectations for domestic inflation, the output gap, and the nominal devalu-

ation rate to one standard deviation cost-push shock. In the exercise, we set ρu = 0 (no

persistence), σu = 0.05, ϕ = 0.5 and ω = 1. The impulse response functions of the variables

exhibit optimal expected paths that are induced by the central bank’s intervention after the

occurrence of the shock. When θ−1 = 0 (blue solid line), the domestic inflation initially

jumps in response to the shock but then shifts to a negative number (deflation) in the fol-

lowing period and then gradually converges to zero over time. The private expectations are

fully rational and are model-consistent. Thus, the dynamics of next-period domestic infla-

tion and inflation expectations are consistent. The output gap initially shifts to a negative

number and then gradually converges to zero. The impulse response functions show optimal

inflation-output gap trade-offs to stabilize private agents’ rational expectations. The nomi-

nal devaluation rate initially shifts to a negative number (initial appreciation), jumps to a

positive number (devaluation) in the following period, and then gradually converges to zero.

The initial response of the devaluation rate is mainly caused by the initial response of the

output gap. The dynamic responses of the devaluation rate, in contrast, are mainly related

to the lagged differences of the responses of the output gap, as implied in (5) and (7).

When θ−1 = 100 (red dashed line), domestic inflation jumps less than that under RE

because of the smaller ΓπH , u. It also maintains a lower level than under RE over the dynam-

ics because of the higher ρπH in equation (22). This implies that the economy has a lower

domestic price level than that under RE. The output gap initially drops more than under

RE and then converges to zero over time. These actions show robustly optimal dynamic

trade-offs that are implemented by the central bank, which seeks to stabilize private agents’

worst-case expectations. When θ−1 > 0, the private expectations become worst-case ex-

pectations, which are no longer model-consistent. The dynamic responses of the worst-case

expectation maintain somewhat milder behavior than those under RE in terms of magnitude.

This implies that the central bank puts more effort into stabilizing private expectations to

manage the worst-case outcome caused by distorted expectations. These results are in line
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Figure 6: Dynamic Responses of Macroeconomic Variables to the Cost-Push Shock: ρu = 0
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with the prediction in the closed-economy environment in Woodford (2010). The nominal

devaluation rate, in contrast, behaves in a different way. The nominal devaluation rate ini-

tially drops below that under RE and jumps in the following period more than that under

RE. Then, the nominal devaluation rates maintain higher levels than those under RE over

the dynamics. The dynamics of the nominal devaluation rates are also closely linked to the

initial response and the lagged differences of the dynamic responses of the output gap. The

patterns of the dynamic responses of the variables become quantitatively more substantial

when θ−1 = 500 (black dashed line).

Figure 7 shows the dynamic impulse response functions of the same variables when the

cost-push shock is highly persistent, ρu = 0.9. When θ−1 = 0 (RE), the optimal monetary

policy calls for a gradual and smooth decrease in the responses of domestic inflation over

time after the initial jump. They are qualitatively different from the responses when the

persistence of the shock is mild, as shown in Figure 6. These also imply different optimal

dynamic trade-offs. The output gap now shows hump-shaped dynamic responses. After

the initial drop, the output gap drops further for the two following periods. The reason

is because the output gap is determined by equation (21): (i) the gap between domestic

inflation and its expectation is smaller than in the case in Figure 6, and (ii) the cost-push

shock remains high because of its high persistence. The nominal devaluation rate initially
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Figure 7: Dynamic Responses of Macroeconomic Variables to the Cost-Push Shock: ρu = 0.9
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drops and then gradually converges to zero. Unlike the case in Figure 6, the devaluation rate

does not jump to a positive number after the initial drop. The reason is because the lagged

difference ∆xt remains negative for the following two periods by the hump-shaped impulse

response functions.

When θ−1 = 100, the initial responses of the domestic inflation response are substan-

tially less than those under RE because of the substantially smaller ΓπH , u. In addition, it

maintains a significantly lower level than under RE over the dynamics because of higher ρπH
and ρu in equation (22). The worst-case inflation expectation also shows milder dynamic

responses than those under RE. These mild responses (caused by concerns about distorted

expectations) are significantly prominent over the ones in Figure 6. As discussed in Fig-

ures 2-4, the essential mechanism of the results is that the higher persistence of the shock

strengthens the central bank’s motivation to conduct more conservative monetary policy

when it is concerned about distorted expectations. The output gap has a larger initial drop

than RE, drops slightly further in the following period, and then converges to zero. The

output gap shows weaker hump-shaped responses than RE. Consequently, the devaluation

rate initially drops more than RE, jumps to a negative number close to zero in the following

period, and then converges to zero over time. When θ−1 = 500, the milder responses of

domestic inflation and its worst-case expectation become more prominent. The output gap
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has a larger initial drop and does not have hump-shaped responses in the following periods.

Consequently, the devaluation rate has a larger initial drop, jumps to a positive number near

zero, and then shows a mild inverse-U shape over time until it converges to zero. As concerns

about distorted expectations rise, the nominal exchange rate shows milder dynamics over

time after an aggressive initial response.

4 Bayesian Inference

In this section, we perform empirical analyses using the models of the robustly optimal

policy. The crucial questions regarding the models are (i) what the actual data tell about the

parameters of the model, including the central bank’s concerns about distorted expectations,

and (ii) how the estimated models of optimal monetary policy predict actual monetary

policies. We consider two classes of models to answer these questions. One is the RE model

with θ−1 = 0, and the other is the model with distorted expectations, in which θ−1 is an

estimable parameter. Throughout this section, we use the acronym ‘NRE’ when we refer to

the model in which θ−1 is an estimable parameter. Estimating the models of the robustly

optimal monetary policy means that we interpret the actual data as an outcome interaction

with the optimal monetary policy from the policymakers. All models are estimated by using

time-series data and the likelihood-based Bayesian method.

4.1 Data

We consider Canada and Mexico for our empirical analyses. On the one hand, both are

considered to be typical small open economies. They are located in North America, have the

United States as their main trade partner, and are OECD member countries (Canada: joined

in 1961, Mexico: joined in 1994). On the other hand, Canada is considered to be a typical

advanced country, whereas Mexico is regarded as a typical emerging market counterpart.

The business cycle fluctuations of Mexico have been substantially more volatile than those

of Canada. Furthermore, the cyclical patterns of prices and quantities, such as inflation rates,

exchange rates, and cross-border capital flows, have been significantly different between the

two countries. What the data tell us about the models of the robustly optimal policy for the

countries is a question of interest.

We use quarterly data on the CPI inflation rate, nominal devaluation rate, and US CPI

inflation rate as observables. To construct the observables, we use quarterly CPI price indices

and nominal exchange rates (vis-á-vis the US dollar). All price indices are seasonally adjusted

by using the program package X13-ARIMA-SEATS. The time spans of the CPI inflation rate

and the nominal devaluation rate are Q2:1991–Q4:2008 for Canada and Q1:1991–Q4:2008
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Figure 8: Time Series Observations
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for Mexico. The US CPI inflation rate is used for the overlapping periods for each country.

Figure 8 exhibits the time-series observations for CPI inflation rates πt, nominal devaluation

rates ∆et, and US CPI inflation π∗t over the sample periods. All series are demeaned. It

is observed that the CPI inflation and nominal devaluation rates do not show significant

comovements in Canada. In Mexico, however, there are strong comovements between the

two series during the Mexican Peso Crisis (1994-1996). The CPI inflation rate in Mexico

was significantly affected by the exchange rate pass-through during the episode of large

devaluation.

4.2 The Linear State Space System

We reproduce the system that governs equilibrium solutions of the model. We denote the

vector of state variables as ξt ≡ [ε′t,X
′
t,Φ

′
t−1]

′
and denote Sε ≡ [I,C ′X ,0]′, where I and 0

are identity and zero matrices, respectively. Equation (16) can be rewritten as

ξt+1 = Hξt + Sεεt+1.
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Similarly, we denote the set of non-predetermined variables as χt ≡ [it,µ
′
Y,t,µ

′
X,t,Etµ′X,t+1]

′
,

so that equation (17) can be rewritten as

χt = Gξt.

The time-series observables are used to identify some parameters of interest in the system

of equations that represent equilibrium solutions of the model. The equations for aggregate

demand and aggregate supply, (2) and (4), fully describe the equilibrium determination of

domestic inflation and the output gap, subject to distorted beliefs and stochastic shocks.

There are some practical limitations in measuring the pure domestic inflation rate πH,t and

output gap xt for the countries. However, we can indirectly map the data to the two model

variables by using observables on domestic CPI inflation rates, nominal devaluation rates,

and US CPI inflation rates. The CPI inflation πt of a domestic country in the model is

determined as

πt = πH,t + α∆st, , (23)

and the nominal devaluation rate ∆et is determined by equation (7), where we now use series

for the US CPI inflation rate as proxies for inflation in the rest of the world π∗t . The process

of ỹ∗t is exogenously given in the model with calibrated parameters ρy∗ and σy∗ . Thus, we

use observations on πt and ∆ẽt such that

∆ẽt ≡ ∆et + π∗t , (24)

with equations (7) and (23) yields indirect observations for πH,t and ∆xt for the model

counterparts. The variable ∆ẽt represents the inflation rate of the rest of the world measured

in domestic currency. Note that the magnitude of fluctuations of US CPI inflation π∗t in

Figure 8 is much milder than the ones of ∆et. This implies that the fluctuations of ∆ẽt of

the two countries mostly come from the fluctuations of ∆et.

Since the set of variables needed to express πt and ∆ẽ as solutions to the equilibrium also

features their lagged counterparts, the vector [ξ′t, ξ
′
t−1]′ should be used as the state variables

in the system of equations. The measurement equations for the observables with the state

variables (accounting for measurement errors) are given by: πt

∆ẽt

 = G̃

 ξt

ξt−1

+

 σmeπ 0

0 σme∆ẽ

 ·
 εme,πt

εme,∆ẽt

 , (25)
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Table 1: Pre-Set Parameters

Parameter Canada Mexico
σ 1
ζ 0.75
ρy∗ 0.92

σy∗ × 100 0.55
β 0.99 0.975
α 0.4 0.248

where [εme,πt , εme,∆ẽt ]′ are orthogonal standard normal random variables and [σmeπ , σme∆ẽ ]
′ are the

standard deviations of the measurement errors on the observables for πt and ∆ẽ, respectively.

The transition equations for the evolution of the state variables are given by ξt+1

ξt

 = H̃

 ξt

ξt−1

+ νt+1. (26)

Thus, equations (25) and (26) complete the description of the linear dynamic state space

system. The details for H ,Sε,G, H̃ , G̃, and νt+1 are presented in Appendix B.

4.3 Pre-Set Parameters

Some of the parameters of the models are preset before the Bayesian estimation. These

parameter values directly follow the previous literature and use the moments in the data

without referring to the Bayesian estimation. These parameters can further be classified

into the two subgroups: the structural parameters that have an economic interpretation

[σ, ζ, β, α]′ and the parameters that govern the transition process of the world output shock

[ρy∗ , σy∗ ]
′. The values of these parameters are listed in Table 1.

The parameter σ captures the curvature of the utility function of the household and is

assumed to be 1, which results in a log utility function for all the countries, as in Gali and

Monacelli (2005). The Calvo-Yun parameter of price stickiness, ζ, is assumed to be 0.75

for all countries, which signifies an average period of 1 year between price adjustments. For

the rest of the world’s output, we use the output series of the US and estimate an AR(1)

regression. This yields a persistence, ρy∗ , of 0.9261 and a standard deviation, σy∗ , of 0.0055.

The discount factor, β, is calibrated separately for each country. The value of β is chosen

to match the average interest rate in the corresponding country over the sample period.

Mendoza (1991) estimates the annual country interest rate for developed countries as 4%

on average. Uribe and Schmitt-Grohé (2017) estimate the annual country interest rates of
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Table 2: Prior Distributions of Parameters for Estimation

Parameter Support Distribution Para (1) Para (2) [mean, std]
θ−1 [0, 1010] Uniform 0 1010 [5 · 109, 2.88 · 104]
ω R+ Gamma 2.0 2.0 [4.0, 2.82]
ϕ R+ Gamma 2.0 2.0 [4.0, 2.82]
ρu [0, 1) Beta 2.0 3.0 [0.4, 0.2]
ρa [0, 1) Beta 2.0 3.0 [0.4, 0.2]
σu × 100 R+ Gamma 0.25 2.0 [0.5, 1.0]
σa × 100 R+ Gamma 0.25 2.0 [0.5, 1.0]

emerging market countries as 10% on average. Thus, we set the value of β for Canada as

0.99, whereas we set it to 0.975 for Mexico. The home-bias parameter, α, is also calibrated

separately for each country. It is calibrated to match the average import-GDP ratio over the

time series. Thus, α is 0.4 for Canada and 0.248 for Mexico, which signifies that imports

represent 40% of GDP for Canada and 25% of GDP for Mexico.

4.4 Estimated Parameters

We estimate the remaining seven structural parameters Θ ≡ [θ−1, ω, ϕ, ρu, σu, ρa, σa]
′ and

two nonstructural parameters [σmeπ , σme∆e ]
′ by using the likelihood-based Bayesian method.

Table 2 provides the details of the prior distribution of the seven structural parameters.

To account for the possibility of the RE, the minimum value of θ−1 is 0. The maximum value

of θ−1 is 1010, which implies a sizable departure from the RE. The prior distribution of θ−1

is assumed to be uniform between these lower and upper bounds. For the parameter ω, we

allow for a broad range while Gali and Monacelli (2005) focuses on a special case of ω = 1.

The prior distribution of ω follows a Gamma (2,2) distribution, resulting in a mean of 4

and a standard deviation of 2.82. The Frisch elasticity of labor supply in the model is given

as ϕ−1. Given that many microeconomic estimates of the Frisch elasticity lie between 0.3

and 0.5, while many macroeconomists use an estimate between 2 and 4, we allow for a wide

range of values for ϕ, assuming that ϕ follows a Gamma (2,2) distribution. The persistence

of shock processes is assumed to follow a Beta (2,3) distribution, with a support of [0, 1],

which allows for a mean of 0.4 and a standard deviation of 0.2. The one hundred times

of the standard deviations of the shock processes are assumed to follow a Gamma (0.25,2)

distribution, with a support of (0,∞). This allows for a mean and standard deviation of

0.5 and 1.0, respectively. Finally, for the standard deviation parameters of the measurement

errors of the observables, we impose uniform distributions with the maximum supports to

be 25% of the standard deviation of each observable.

We obtain draws from the posterior distribution of the estimated parameters Θ condi-
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Table 3: Posterior Distribution of Estimated Parameters

Canada Mexico
RE NRE RE NRE

Parameters Median [5%, 95%] Median [5%, 95%] Median [5%, 95%] Median [5%, 95%]
θ−1 NA NA 7.56 [1.61 , 17.6] NA NA 504.2 [342.0. 733.9]
ω 3.53 [2.96, 4.07] 3.34 [2.74, 4.15] 5.15 [3.92, 6.92] 7.08 [6.36, 8.18]
ϕ 1.30 [0.41, 3.02] 0.70 [0.11, 2.07] 0.76 [0.17, 2.01] 1.10 [0.68, 2.07]
ρu 0.91 [0.84, 0.96] 0.89 [0.80, 0.95] 0.93 [0.86, 0.97] 0.08 [0.02, 0.19]
ρa 0.92 [0.85, 0.97] 0.88 [0.67, 0.96] 0.97 [0.94, 0.99] 0.70 [0.20, 0.92]
σu 0.029 [0.018, 0.050] 0.022 [0.015, 0.038] 0.036 [0.024, 0.060] 0.065 [0.053, 0.091]
σa 0.004 [0.001, 0.007] 0.008 [0.004, 0.012] 0.106 [0.081, 0.143] 0.019 [0.00, 0.035]

tional on the matrix of observables O ≡ [πt,∆ẽt]. The posterior distribution, denoted as

P (Θ|O), is the product of the likelihood function of O and the prior distribution of Θ, which

is denoted as L(O|Θ)P (Θ). The likelihood function L(O|Θ) is evaluated numerically using

the linear state space system (25)-(26) and Kalman filter. To evaluate the posterior dis-

tribution P (Θ|O), we use a random-walk Metropolis-Hastings sampler described in Herbst

and Schorfheide (2016). We use the last 1 million draws from the 5 million MCMC chains

for the posterior evaluation with an acceptance rate of 25 percent. On a standard desktop

computer3, the estimation of the RE models takes less than five hours for each country. The

estimation of the NRE models, on the other hand, is more computationally demanding, and

requires approximately five days for each country.

4.5 Posterior Distributions: RE vs. NRE

Table 3 shows the posterior distributions of the parameters for Canada and Mexico, in both

the RE and NRE models. In the case of Canada, the posterior median of θ−1 in the NRE

model is 7.56, with a 90% credible interval of [1.61, 17.6]. The data tells us that the central

bank has relatively small concerns about distorted expectations in Canada.

The slight departure of the distorted expectations of the NRE model from the RE in

Canada results in the similarities of the posterior distributions of the other structural pa-

rameters between the two models. The posterior medians for ω in the RE and NRE models

are 3.53 and 3.34, respectively, the posterior medians for ϕ in the two models are 1.30 and

0.70, respectively, and the 90% credible intervals for the two parameters have substantial

overlaps between the two models. These results imply that the slopes for the aggregate sup-

ply and aggregate demand curves are similar between the two models. Using the posterior

medians with the other calibrated parameters, the slopes of the aggregate demand curve (2),

σ−1
α , for the RE and NRE models are 2.01 and 1.94, respectively. The slope of the aggregate

3The estimations are performed on a desktop with a 3.60GHz Intel Core i7-7700 processor with four cores
and 64.0 GB RAM.
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supply curve (4), κ ≡ (1−ζ)(1−ζβ)(σα+ϕ)
ζ

, for the RE and NRE models is 0.15 and 0.10, re-

spectively. The small posterior median of θ−1 and the similarity of the equilibrium relation

of aggregate demand and supply entail similar estimates for the exogenous processes. The

posterior medians of the persistence of the cost-push shock ρu of the RE and NRE models

are 0.91 and 0.89, respectively, and the posterior medians of the standard deviation of the

cost-push shock σu for the two models are 0.029 and 0.022, respectively. The posterior medi-

ans of the persistence of the domestic productivity shock ρa for the RE and NRE models are

0.92 and 0.88, respectively, and the posterior medians of the standard deviation of the shock

σa for the two models are 0.004 and 0.008, respectively. The 90% credible intervals for the

parameters are similar across the two models. Accordingly, Canada shows slim differences

between the estimated RE and NRE models overall.

In contrast, in the case of Mexico, there are non-trivial differences in the estimation results

between the RE and NRE models. The posterior median of θ−1 in the NRE model is 504.2,

with a 90% credible interval of [342.0, 733.9]. Based on the analyses in Section 3, we can infer

that the Mexican data tells us that the central bank has substantial concerns about distorted

expectations. The high θ−1 also affects the estimates of the other structural parameters. The

posterior medians for ω and ϕ in the RE model are 5.15 and 0.76, respectively. However,

the posterior medians for ω and ϕ in the NRE model are 7.08 and 1.10, respectively. The

intersections of the 90% credible intervals of the same parameters between the two models

are far narrower than in the case of Canada. The slopes of aggregate demand σ−1
α for the

two models become 2.03 and 2.51, and the slopes of aggregate supply κ in the RE and

NRE models become 0.11 and 0.13 respectively. There are stark differences in the estimated

parameters of the exogenous processes between the two models. For the parameters of the

cost-push shock, the posterior medians of ρu and σu in the RE model are 0.93 and 0.036.

In the NRE model, however, ρu and σu are 0.08 and 0.70, respectively. For the domestic

productivity parameters, the posterior medians of ρa and σa in the RE model are 0.97

and 0.106, respectively, whereas they are 0.65 and 0.019, respectively, in the NRE model.

In addition, there are few intersections between the 90% credible intervals for the same

parameters of the two models. Accordingly, Mexico shows substantial differences between

the estimated RE and NRE models overall4.

4We also estimate NRE models for other small open economy countries: Australia, Chile, Colombia, New
Zealand, Norway, South Africa, South Korea, and Sweden. We use observations of the countries starting
in Q1:1991 to Q4:2008. We use the fitted AR (1) process of the U.S. real GDP and observations on the
U.S. CPI inflation rate for the overlapping period to express the world output process and world inflation
rate. Table C.8 in Appendix C summarizes posterior distributions of θ−1 in NRE models for these countries.
Overall, developed countries (Australia, New Zealand, Norway, Sweden) have smaller θ−1 than emerging
countries (Chile, Colombia, South Africa, South Korea), which is consistent with the difference in results
between Canada and Mexico.
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4.6 Prediction of Monetary Policy Rates: RE vs. NRE

Based on the estimated and calibrated parameters, the monetary policy rate in the model

is computed as the solution in equation (17). How well the estimated models predict the

actual monetary policy rate of the data is a question of interest. We compare the monetary

policy rates predicted from the estimated models and in the data for Canada and Mexico.

We use three-month interbank rates in Canada and immediate call rates in Mexico as proxies

of actual monetary policy rates. All data are in quarterly frequency.

The left panel in (a) in Figure 9 compares actual monetary policy rate data5 (black dot-

ted line) and model-predicted policy rates from estimated RE (blue solid line) and NRE

(red dashed line) models for Canada. The model-predicted policy rates are robustly op-

timal monetary policy rates generated by the models by using estimated parameters and

the historical processes of shocks extracted from the Kalman smoother. The panel shows

that there are few differences in the predictions of the monetary policy rate between the

two models. In addition, the model-generated monetary policy rates show higher short-term

volatilities than the actual data. Despite the differences in volatilities, the model-predicted

interest rates and actual data show close dynamic comovements. To see the comovements

more clearly, we compare the low frequency movements of the series which eliminate the

short-term volatilities, as depicted in the right panel.6 The model-generated monetary pol-

icy rates show strong comovements with the actual data. In terms of the distance from the

actual data, the interest rate generated by the NRE model performs slightly better than that

of the RE model. The small differences between the interest rates generated by the RE and

NRE models are intuitive given that the posterior distributions of the two models are close

and are associated with θ−1 = 7.56, which is not far from zero.

The left panel in (b) in the same figure exhibits the three series for Mexico. Unlike

Canada, the predictions of the monetary policy rates between the two models are sharply

different in Mexico. More importantly, the NRE model obviously outperforms the RE model

in the prediction. Throughout the sample period, the model-generated monetary policy

rate by the NRE model almost replicates the path of the actual monetary policy rate. In

particular, the policy rate from the NRE model succeeds in predicting the central bank’s

sharp interest rate hikes during the Mexican Peso Crisis. In contrast, the model-generated

monetary policy rate by the RE model moves in the opposite direction from the actual policy

rate throughout nearly all of the sample period. The right panel more clearly shows that the

low frequency in the monetary policy rates between the data and the NRE model are very

similar. In contrast, the RE model shows the opposite dynamics.

Given that no moments of the monetary policy rate are targeted in the estimation, the

5Since the original series are annualized rates, we quarterized and demeaned the series.
6We applied the Hodrick-Prescott filter with the penalty parameter 1600.
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Figure 9: Monetary Policy Rates, Data and Model Predictions
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Notes. The left panels show the original three series, and the right panels show low-frequency components
of the three series, extracted by HP filter.

finding that the monetary policy rate in the NRE model in Mexico closely matches that in the

actual data is impressive. How is the finding related to θ−1 in the NRE model? Moreover,

why is the performance of the RE model poor? Table 4 displays the second moments of

the two observables used in the estimation, with the log marginal data density (MDD) of

each model. The table provides insight that the persistence of inflation is a key identifying

moment that distinguishes the NRE model from the RE benchmark.

In the case of Canada, the performance of the RE and NRE models in matching the

moments of observations is qualitatively similar. The two models successfully match the

standard deviations of observations and their cross-correlations. Both models are unsuccess-

ful in matching high and positive autocorrelations of πt for the first order, although the NRE

model marginally improves the moments. The two models match the autocorrelations of ∆ẽt

well. In the case of Mexico, in contrast, there are obvious differences in the second moments
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Table 4: Second Moments of Observables

Canada Mexico
Moments Data RE NRE Data RE NRE
σ(πt) 0.30 0.33 0.33 2.47 2.62 1.90
σ(∆ẽt) 3.16 3.18 3.18 8.70 8.58 8.38
ρ(πt,∆ẽt) -0.19 -0.25 -0.30 0.34 0.25 0.14
ρ(πt, πt−1) 0.67 0.04 0.14 0.88 0.23 0.77
ρ(πt, πt−2) 0.15 -0.01 0.04 0.67 0.09 0.44
ρ(πt, πt−4) -0.09 -0.04 -0.04 0.44 -0.02 0.12
ρ(∆ẽt,∆ẽt−1) 0.30 0.35 0.38 0.08 0.11 -0.16
ρ(∆ẽt,∆ẽt−2) 0.03 0.10 0.13 -0.02 0.04 -0.10
ρ(∆ẽt,∆ẽt−4) -0.07 -0.05 -0.05 0.00 -0.01 -0.03
Log MDD 436.34 417.67 213.31 263.40

Notes. The log marginal data densities are computed by using Geweke (1999)’s harmonic mean estimator.

between the two models. The RE model performs relatively better in matching the standard

deviations of the observations and their cross-correlations, although the NRE model also

matches them reasonably well. In terms of matching the autocorrelations of πt, however, the

NRE model remarkably outperforms the RE model. In the data, there is strong persistence

of the CPI inflation rate up to higher orders. The first-, second-, and fourth-order autocorre-

lations are 0.88, 0.67, and 0.44, respectively, all of which are much higher than the moments

in Canada. The RE model fails to match the moments. The RE model predicts 0.23, 0.09,

and -0.02 for the first-, second-, and fourth-order autocorrelations, respectively. The NRE

model predicts 0.77, 0.44, and 0.12 for the first-, second-, and fourth-order autocorrelations,

respectively, which are much closer to the moments from the data. In terms of matching the

autocorrelations of ∆ẽt, the two models both match them fairly well in the sense that the

predicted autocorrelations are all close to zero, which are also shown in the data. The last

row in the table shows that in the case of Canada, the MDD of the NRE model is smaller

than that of the RE model. In the case of Mexico, the MDD of the NRE model increases

by 25 percent relative to the RE model. This implies that the NRE model, which has one

more estimable parameter θ−1, does not necessarily always yield better performance, and

the higher MDD of the NRE model for Mexico comes from its success in explaining inflation

persistency.

The critical insight on the success of the NRE model is in the conservative and more

history-dependent monetary policy (than the RE benchmark) caused by the concerns about

distorted expectations. Table 5 reports robustly optimal policy coefficients to cost push

shock in the estimated models. In Mexico, the ΓπH ,u in the RE and NRE models are 0.0342
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Table 5: Robustly Optimal Policy Coefficeints in Estimated Models

Canada Mexico
RE NRE RE NRE

ΓπH ,u 0.0209 0.0206 0.0342 0.0171
Γx,u -0.0982 -0.0937 -0.1462 -0.2438

Figure 10: Policy Coefficients ΓπH ,u and Γx,u in the NRE Models Conditional on σu

(a) Canada
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and 0.0171, respectively, and the Γx,u in the two models are -0.1462 and -0.2438, respectively.

The monetary policies in the two models have very different agendas, whereas the policies

in Canada have commonality. The reason is because the posterior median θ−1 = 504.2 of

the NRE model in Mexico indeed produces a sluggish initial response of domestic inflation.

Figure 10 shows the robustly policy coefficients of domestic inflation ΓπH ,u and the output

gap Γx,u, conditional on the standard deviation σu. Except for σu and θ−1, the parameters

are set by using the calibrated and estimated parameters in the NRE model for the two

countries. The maximum number of grids on the x-axis in each panel is the posterior median

of σu of the NRE model for the two countries. The θ−1 for each country is the posterior

median of the NRE model.

When θ−1 = 0, ΓπH ,u increases linearly with the increase in σu in both countries, which

clearly exhibits the certainty equivalence. In Canada (which is shown in the panels in

(a)), there are slim differences between the policy coefficients in the RE and NRE models.

In Mexico (which is shown in the panels in (b)), ΓπH ,u in the NRE model increases less

than proportionally with σu. Furthermore, ΓπH ,u begins to decrease when σu is larger than

approximately 0.04. The conservative monetary policy makes domestic inflation exhibit a

sluggish response to the shock, which causes a dynamic persistence of domestic inflation. In

contrast, the right panel shows that the Γx,u of the NRE model declines more aggressively

than in the case under RE as σu increases. The intuition is essentially the same as discussed

in Section 3.
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Figure 11: Historical Dynamics Model-Predicted Domestic Inflation, Devaluation, and CPI
Inflation Driven by Cost-Push Shock
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(b) Mexico
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Notably, combining (7) and (23) gives the following relation between CPI inflation πt,

domestic inflation πH,t, and the sum of the devaluation rate and the US inflation rate ∆ẽt:

πt = (1− α)πH,t + α∆ẽt. (27)

With the calibrated parameter α = 0.248 in Mexico, (27) implies that the dynamics of CPI

inflation have a high weight on the dynamics of domestic inflation πH,t. However, the effect

of the exchange rate pass-through from ∆ẽt to πt is also important, as is observed in Figure

8, particularly during the Mexican Peso Crisis, which involved large nominal devaluation.

The estimated NRE model for Mexico can generate considerable responses of the devaluation

rate subject to the cost-push shock, whereas the RE model has a limitation. The magnitude

of policy coefficient Γx,u in the NRE model is almost twice as large as that in the RE model.

Remark that ∆ẽt is an increasing function of ∆xt by equations (5)-(7). Thus, Γx,u is tightly

linked to the response of ∆ẽt. Figure 11 shows the model-predicted dynamics of πH,t, ∆et, and

πt, driven by historical cost-push shock produced by the Kalman smoother (see Figure C.23

in Appendix C for the historical dynamics of smoothed shocks). There are few differences

in the dynamics of the three series between the RE and NRE models in Canada. In Mexico,
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Figure 12: Historical Decomposition of Model-Predicted Monetary Policy Rates
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(b) Mexico
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the dynamics of πH,t between the RE and NRE models are quite similar, and the NRE model

generates a slightly more volatile movement during the Mexican Peso Crisis. Remark that

in πH,t is determined by the sum of ΦπH ,t and ΓπH ,uε
u
t . Thus, the dynamics of πH,t can be

more volatile even though the optimal policy coefficient ΓNREπH ,u
is less than ΓREπH ,u because of

the impact from ΦNRE
πH ,t

and ΦRE
πH ,t

(see Figures C.26 - C.27 in Appendix C for decomposition

of the variables driven by Φt and Γuε
u
t ). There are sharp differences in the dynamics of ∆et.

First, the NRE model predicts large devaluation during the Mexican Peso Crisis, whereas the

devaluation predicted from the RE model for the same period is relatively limited. Second,

the overall fluctuation beyond the Crisis periods is also substantially different. Because of

the sharp differences in ∆et, there are significant differences in the prediction of the CPI

inflation πt, which contains the pass-through effect of the devaluation.

The sharp differences observed in Figure 11 indicate that cost-push shock is not a primary

driver of the fluctuations of devaluation in the RE model for Mexico, whereas it is in the NRE

model. The differences in the prediction of the sources of the fluctuation lead to different

predictions of the robustly optimal monetary policy rate. Figure 12 displays the historical
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Figure 13: First-Order Autocorrelations of πt, Conditional on θ−1 and σu in Mexico
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decomposition of the model-predicted monetary policy rates. Unsurprisingly, there are few

differences in the pattern of decompositions between the models in Canada, whereas there

are sharp differences in Mexico. In Canada, the historical dynamics of the monetary policy

rates in both models are responses to the cost-push shock (shown by the red dashed line).

In contrast, the TFP shock plays a secondary role (shown by the yellow dashed line), and

the world-output shock (shown by the purple dashed line) is negligible. In the RE model

for Mexico, the TFP shock substantially affects the historical dynamics of policy rates. In

the NRE model, on the other hand, the cost-push shock is the main driver of the historical

responses of the policy rate, and the impacts of other shocks are negligible. In sum, Figures

11-12 imply that the estimated RE model in Mexico is misspecified because it assigns the

TFP shock as the major source of the economic fluctuations, which leads to the failure in

the prediction of the monetary policy rate consistent with the actual data.

Notably, the model-predicted CPI inflation driven by the cost-push shock in the NRE

model for Mexico is also close to the actual observation of the CPI inflation rate. The result

also indicates that the success of the NRE model of matching the persistency of the CPI

inflation rate is closely related to the moments of the cost-push shock. Figure 13 shows the

patterns of the first-order autocorrelation corr(πt, πt−1) of the NRE model for Mexico when

θ−1 varies from 0 to 504.2 (posterior median in the NRE model), conditional on different σu

from 0.03 to 0.065 (posterior median in the NRE model). We can observe that given any σu,

corr(πt, πt−1) increases as θ−1 increases and further, corr(πt, πt−1) increases as σu becomes

larger, conditional on any θ−1. The interplay of the concerns of distorted expectations and

robustly optimal monetary policy, and the volatility of the cost-push shock governs the

inflation persistency in the NRE model.

37



Table 6: Posterior Distribution of θ−1 of NRE Models for Mexico: Subsamples

Median [5%, 95%]
Flexible Exchange Rate Regime 469.3 [284.0, 763.6]
Post-Peso Crisis 305.0 [182.0, 492.5]

4.7 Subsample Analysis

A potential concern on the estimation results for Mexico is that the sample periods of

observables contain different exchange rate regimes - currency peg and the flexible exchange

rate regime. Our benchmark results, including the high θ−1 might be mainly caused by the

switch in the exchange rate regimes in the sample. Another potential concern is that the

benchmark results could be altered when we exclude samples of the Mexican Peso Crisis.

In this subsection, we argue that the impact of the potential concerns is limited. We

rerun the estimations for Mexico using two subsamples: (i) a subsample covering the flexible

exchange rate regime only (starting in 1Q:1995) and (ii) a subsample covering the period

after the Mexican Peso Crisis (starting in 2Q:1995).

Table 6 summarizes the posterior distributions of θ−1 of the NRE models of Mexico.

When considering the subsample covering the flexible exchange rate regime, the posterior

median of θ−1 is 469.3, with a 90% credible interval [284.0, 763.6]. It is close to that in the

benchmark estimation in Table 3. Thus, the benchmark result is not mainly caused by the

switch in the exchange rate regimes in the sample. The result is intuitive because a high

θ−1 is closely related to large fluctuations in the devaluation rate, which do not appear in

the sample covering the currency peg period. Regarding the post-Peso Crisis subsample, the

posterior median of θ−1 is 305.0 with a 90% credible interval [182.0, 492.5]. The distribution

shows that the θ−1 becomes smaller than the benchmark. Thus, it also supports the claim

that the large devaluations during the crisis favor a high estimate of θ−1. However, note

that Mexico continues to have much a higher θ−1 than Canada. This implies that the model

predicts that the central bank in Mexico conducted robustly optimal monetary policy with

substantial concerns about the private sector’s NRE than the central bank in Canada, even

when we focus on a subsample that excludes the Peso Crisis.

Moreover, an important theme of the estimation is to compare the performance of the

prediction of monetary policy rates between the RE and NRE models. Figure 14 compares

the performance of monetary policy predictions between the two models using the two dif-

ferent subsamples. The main finding in the benchmark estimation continues to hold: The

NRE models succeed in predicting actual monetary policy rates, whereas the RE models fail

to do so. In the subsample capturing the floating exchange rate regime, the monetary policy

rates predicted by the NRE model are still very close to the actual data, and those predicted
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Figure 14: Monetary Policy Rates, Data and Model Predictions for Mexico: Subsamples

(a) Flexible Exchange Rate Regime Subsample
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(b) Post-Peso Crisis Subsample
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Notes. The left panels show the original three series, and the right panels show low-frequency components
of the three series, extracted by the HP filter.

by the RE model fails to match the direction. When using the post-Peso Crisis subsample,

the NRE model continues to outperform the RE model.

5 Conclusion

In this paper, we study robustly optimal monetary policy in a small open economy where

private agents’ forward-looking expectations are potentially distorted. As the central bank’s

concerns about distorted expectations increase, it conducts a more history-dependent mone-

tary policy than in the RE benchmark. When a cost-push shock occurs, the robustly optimal
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policy yields a sluggish initial response and more history-dependent dynamics (than the RE

benchmark) of domestic inflation and results in a greater initial response of the nominal

devaluation rate. The estimated NRE models indicate small deviations from the RE bench-

mark in Canada, whereas there are substantial deviations in Mexico. The estimated NRE

model for Mexico closely predicts the actual path of the monetary policy rate, whereas the

estimated RE model fails to predict it. The key mechanism of the success of the NRE model

for Mexico is that the robustly optimal monetary policy of the NRE model can explain

key moments of the CPI inflation dynamics, which is a combination of domestic inflation

dynamics and the exchange rate pass-through.

Considering models that move beyond the rational expectations hypothesis is increas-

ingly important in macroeconomic modeling and policy analyses. The model we consider

in this paper is parsimonious and accounts for an expectation wedge in the canonical NK

environment. The model provides us with a meaningful improvement in the prediction of the

actual monetary policy rate. We believe that considering richer model environments could

better understand how distorted expectations relate to other shocks, wedges, and optimal

policy designs. We leave such work to future research.
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Online Appendix

A Details of the Solution Method and the Proof of the

Propositions

A.1 Solving the LQ System with Conditionally Linear Commit-

ment using Methods in Kwon and Miao (2019)

We apply the solution method in Kwon and Miao (2019) to solve the linear-quadratic plan-

ner’s problem with conditionally linear commitment. Solving the problem is a two-step

process. In the first step, the hypothetical malevolent nature chooses mt+1 to maximize the

welfare loss. The first-order condition of the Lagrangian with respect to mt+1 is:

θ(1 + lnmt+1)− φt − µ′Y,tY t+1 = 0,

which can be written in terms of εt+1 by using the relation yt+1 = Φt + Γtεt+1, t ≥ 0. This

relation along with constraint (1) yields the following expression:

mt+1 = exp

(
−1

2
θ−2µ′Y,tΓtΓ

′
tµY,t + θ−1µ′Y,tΓtεt+1

)
. (28)

Using the solution for the worst-case belief mt+1, we can find the conditional expectations

of Y t+1 and the relative entropy as:7

Etmt+1Y t+1 = Φt + θ−1ΓtΓ
′
tµY,t,

Etmt+1 lnmt+1 =
1

2
θ−2µ′Y,tΓtΓ

′
tµY,t.

7First, we use the pdf under central bank’s belief: ln f = −nε2 ln(2π)− 1
2ε
′
t+1εt+1. The probability density

function under the worst-case belief can then be written as f̂ = mf =⇒ ln f̂ = lnm+ln f , which results in a
worst-case distribution that is normal with mean θ−1Γ′tµY,t and standard deviation I. Now, the conditional

(on time-t) mean Etmt+1Yt+1 = Et(mt+1Φt + mt+1Γtεt+1) = Φt + Etmt+1Γtεt+1 = Φt + ÊtΓtεt+1 =

Φt + ΓtÊtεt+1 = Φt + θ−1ΓtΓ
′
tµY,t. Similarly, we can find Et(mt+1 lnmt+1).
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In the second step of solving the problem, we can reconstruct the central bank’s welfare

loss function in matrix form as follows:

L(X t,Φt−1 + Γt−1εt, it) =
1

2

 X t

Φt−1 + Γt−1εt

′Q
 X t

Φt−1 + Γt−1εt



+
1

2
itRit +

 X t

Φt−1 + Γt−1εt

′ Sit,
where the matrix

 Q S

S′ R

 is symmetric and positive definite.

The central bank chooses {X t,Φt,Γt, it} after substituting for the chosen value of mt+1

in the Lagrangian. The new Lagrangian is:

L = E−1

∞∑
t=0

βt

{
L(X t,Φt−1 + Γt−1εt, it)−

1

2θ
µ′Y,tΓtΓ

′
tµY,t+

 µX,t+1

µY,t

′ X t+1

Φt + 1
θ
ΓtΓ

′
tµY,t

−A
 X t

Φt−1 + Γt−1εt

−Bit
−Cεt+1

}
. (29)

The first-order necessary conditions with respect to {X t,Φt,Γt, it} are

0 = −QXXX t −QXY (Φt−1 + Γt−1εt)− SXit − β−1µX,t +A
′

XXEtµX,t+1 +A
′

Y XµY,t,

0 = −Rit − S
′

XX t − S
′

Y (Φt−1 + Γt−1εt) +B
′

XEtµX,t+1 +B
′

YµY,t,

0 = −
(
QY Y Φt +Q

′

XYEtX t+1

)
− SYEtit+1 − β−1µY,t + Et

[
A
′

XYµX,t+2 +A
′

Y YµY,t+1

]
,

0 = −βQY YEt
[
Φtε

′

t+1 + Γtεt+1ε
′

t+1

]
− βQ′XYEtX t+1ε

′

t+1

− βSYEtit+1ε
′

t+1 − θ−1µY,tµ
′

Y,tΓt + βEt
[(
A
′

XYµX,t+2 +A
′

Y YµY,t+1

)
ε
′

t+1

]
(30)

where the matrices are partitioned as A ≡

 AXX AXY

AY X AY Y

, B ≡ [BX ,BY ]′, and C ≡

[CX ,CY ]′, Q ≡

 QXX QXY

Q
′

XY QY Y

, and S ≡

 SX
SY

. In addition, the first-order necessary
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conditions with respect to {µX,t+1,µY,t} yield the law of motion of the constraints:

0 = X t+1 −AXXX t −AXY (Φt−1 + Γt−1εt)−BXit −CXεt+1,

0 = Φt + θ−1ΓtΓ
′
tµY,t −AY XX t −AY Y (Φt−1 + Γt−1εt)−BY it,

Adding two more equations, Etεt+1 = 0 and EtµX,t+2 = EtµX,t+1, to the aforementioned

set of 5 equations, we solve:

J



Etεt+1

EtX t+1

Φt

Etit+1

EtµY,t+1

EtµX,t+1

EtµX,t+2


= F



εt

X t

Φt−1

it

µY,t

µX,t

EtµX,t+1


(31)

where εt, X t and Φt−1 are predetermined state variables, whereas it, µY,t, µX,t and EtµX,t+1

are non-predetermined variables. The matrices J and F are

J =



I 0 0 0 0 0 0

0 0 0 0 0 I 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 A′XX 0

0 0 0 0 0 B′X 0

0 Q′XY QY Y SY −A′Y Y 0 −A′XY


,

45



F =



0 0 0 0 0 0 0

0 0 0 0 0 0 I

AXY Γ AXX AXY BX 0 0 0

AY Y Γ AY X AY Y BY −θ−1ΓΓ′ 0 0

QXY Γ QXX QXY SX −A′Y X β−1I 0

S′Y Γ S′X S′Y R −B′Y 0 0

0 0 0 0 −β−1I 0 0


.

In our model, the partitions of the matrices A, B, C, Q, R, and S are produced below:

AXX =


1 0 0 0

0 ρu 0 0

0 0 ρa 0

0 0 0 ρy∗

 , AXY =


0 0

0 0

0 0

0 0



AY X =

 0 −β−1 0 0

−ρσ−1
α β−1σ−1

α Λy,a(1− ρa) −σ−1
α ϕΛy,y∗(1− ρy∗)

 , AY Y =

 β−1 −β−1κα

−β−1σ−1
α 1 + β−1σ−1

α κα



BX =


0

0

0

0

 , BY =

 0

σ−1
α

 , CX =


0 0 0

σu 0 0

0 σa 0

0 0 σy∗

 , CY =

 0 0 0

0 0 0

 ,

QXX =


λx(x

∗)2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , QXY =


0 −λxx∗

0 0

0 0

0 0

 , QY X = Q′XY , QY Y =

 1 0

0 λx

 ,
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R = [0], SX =


0

0

0

0

 , SY =

 0

0

 .

We solve the system of linear difference equations (31) using Klein (2000)’s method. The

solution to the aforementioned system therefore takes the state-space representation as in

(16) and (17). After solving the system, taking the unconditional expectation on equation

(30) and re-arranging it with respect to Γt (which should be constant in conditionally linear

self-consistent commitment), we can obtain the following updating formula for Γ:

Γ(n) = β
(
θ−1E

[
µY,tµ

′
Y,t

]
+ βQY Y

)−1 {E[(A′XY µX,t+2 +A′Y YµY,t+1)ε′t+1]−QXYCX − SYE[itε
′
t]
}
,

(32)

where E[µY,tµ
′
Y,t],E[µX,t+2ε

′
t+1],E[µY,t+1ε

′
t+1], and E[itε

′
t] are computed as follows. First,

define an auxiliary variable X̃t ≡ [ε′t,X
′
t,Φ

′
t−1]′. Then from (16) we obtain

E
[
X̃ t+1X̃

′
t+1

]
= H

[
X̃ tX̃

′
t

]
H ′ +


I C ′X 0

CX CXC
′
X 0

0 0 0

 .

As long as the matrix H is stable, the above equation can be solved and we can obtain

E
[
X̃ t+1X̃

′
t+1

]
. After that, we apply (17) and derive

µY,t = G2,εεt +G2,XX t +G2,ΦΦt−1 = N 2X̃ t,

where G ≡ [G2,ε,G2,X ,G2,Φ] is the second row of G in (17). Then we obtain

E
[
µY,tµ

′
Y,t

]
= G2E

[
X̃ tX̃

′
t

]
G2,

E


it+1ε

′
t+1

µY,t+1ε
′
t+1

µX,t+1ε
′
t+1

 = GE


εt+1ε

′
t+1

X t+1ε
′
t+1

Φtε
′
t+1

 = G


I

CX

0

 .

The updating procedure of Γ in (32) stops when ||Γ(n−1) − Γ(n)|| < ξ. We set ξ = 10−5.
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A.2 Proof of the Propositions

Proof of Proposition 3.1. The interest rate it is a choice variable of the central bank

to determine the optimal path of domestic inflation πH,t and output gap xt. At any given

equilibrium path of {πH,t, xt} and worst-case expectations, the corresponding path of inter-

est rate makes the aggregate demand equation (2) always hold. Thus, the path of {πH,t, xt}
can be determined without reference to equation (2), as long as the zero lower bound is not

binding, which is implicitly assumed in the model. Then the natural rate shocks {at, y∗t } in

(2) do not affect the optimal paths of {πH,t, xt}. Thus, ΓπH ,a = Γx,a = ΓπH ,y∗ = Γx,y∗ = 0. �

Proof of Proposition 3.2. In the equilibrium with the robustly optimal monetary policy,

the expectations of Y t+1 conditional on the worst-case beliefs are determined as (19). Then,

proposition 3.1 implies that µx,t = 0, ∀t, i.e., the component in µY,t regarding (2) is zero.

Thus, for any θ ∈ R+, Êtxt+1 ≡ Etmt+1xt+1 = Φx,t + θ−1Γ2
x,tµx,t = Φx,t = Etxt+1. �

Proof of Proposition 3.3. Given the worst-case NRE from private agents, the first-order

condition of the minimization problem of (29) with respect to ΦπH ,t is summarized as follows

(we follow the method in Appendix A.2 in Woodford (2010)):

−βλx
κ

πH,t − ut − κx̄− βΦπH ,t

Ξ
+ βEt

(
πH,t+1 +

λx
κ2

πH,t+1 − ut+1 − κx̄− βΦπH ,t+1

Ξ

)
= 0

where

Ξ = 1− θ−1β2λx
κ2

Γ2
πH ,u

> 0.

Under the restriction of the linear commitment policy, we have

β
λx
κ

ΦπH ,t−1 − ΓπH ,uε
u
t − (ρuut−1 + σuε

u
t )− βΦπH ,t

Ξ
+β

(
ΦπH ,t +

λx
κ2

ΦπH ,t − ρuut − βEtΦπH ,t+1

Ξ

)
,

(33)

Then, (33) is rewritten as the second-order stochastic difference equation of the process

{Φπ,u,t} as follows:

Et [A(L)ΦπH ,u,t+1] = (σu − ΓπH ,u)ε
u
t − ρu(ut − ut−1),

where

A(L) ≡ β −
(

1 + β +
κ2Ξ

λx

)
L+ L2, (34)

where L is the lag operator. By factorizing the lag polynomial (34), we have the unique and
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stationary solution for Φπ,t as follows:

ΦπH ,t = µΦπH ,t−1 − µ ((σu − ΓπH ,u)ε
u
t − ρu(ut − ut−1)) , (35)

where 0 < µ < 1 is the smaller root of the characteristic equation (we follow the method in

Appendix C in Woodford (2003)),

P(µ) ≡ βµ2 −
(

1 + β +
κ2Ξ

λx

)
µ+ 1 = 0.

Finally, setting ρπH ≡ µ and applying the relation of optimal commitment πH,t = ΦπH ,t−1 +

ΓπH ,uε
u
t to (34) gives equation (22). �
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B Description of The Linear State Space System for

Estimation

The linear state space system, governing the solution to the equilibrium is given as:

ξt+1 = Hξt + Sεεt+1,

χt = Gξt,

where ξt ≡ [εut , ε
a
t , ε

y
t , 1, ut, at, y

∗
t ,ΦπH ,t−1,Φx,t−1]

′
, χt ≡ [it, µπH ,t, µx,t, µ1,t, µu,t, µa,t, µy∗,t, µ1,t+1, µu,t+1, µa,t+1,

µy∗,t+1]
′
, Sε ≡ [I,C ′X ,0]′, and εt+1 ≡ [εut , ε

a
t , ε

y
t ]. The state variables in this system are used

to construct the law of motion of the observables in the estimation process.

There are two variables that are used as observables in the estimation. The CPI inflation,

πt, is the first observable. In the model, it is determined as:

πt = πH,t + α∆st

= (ΓπH ,u,t−1 + ασαΓx,u,t−1) εut − ασαΓx,u,t−2ε
u
t−1 + (ΓπH ,a,t−1 + ασαΓx,a,t−1) εat − ασαΓx,a,t−2ε

a
t−1

+ (ΓπH ,y∗,t−1 + ασαΓx,y∗,t−1) εy
∗

t − ασαΓx,y∗,t−2ε
y∗

t−1 + ΦπH ,t−1 + ασαΦx,t−1 − ασαΦx,t−2

+ ασα

[
1 + ϕ

σα + ϕ
(at − at−1)− σα + ϕ+ α(ω − 1)σα

σα + ϕ
(y∗t − y∗t−1)

]
The second observable is the devaluation of the domestic economy after adjusting for US

CPI inflation, ∆ẽt. In the model, it is determined as:

∆ẽt = ∆et + π∗t

= πH,t + ∆st

= (ΓπH ,u,t−1 + σαΓx,u,t−1) εut − σαΓx,u,t−2ε
u
t−1 + (ΓπH ,a,t−1 + σαΓx,a,t−1) εat − σαΓx,a,t−2ε

a
t−1

+ (ΓπH ,y∗,t−1 + σαΓx,y∗,t−1) εy
∗

t − σαΓx,y∗,t−2ε
y∗

t−1 + ΦπH ,t−1 + σαΦx,t−1 − σαΦx,t−2

+ σα

[
1 + ϕ

σα + ϕ
(at − at−1)− σα + ϕ+ α(ω − 1)σα

σα + ϕ
(y∗t − y∗t−1)

]
The two observables, therefore, constitute the measurement equation, which can be writ-

ten in terms of the state variables from the equilibrium with the robustly optimal monetary

policy, ξt, and their lagged counterpart, ξt−1. After accounting for measurement errors, the
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measurement equation is given as: πt

∆ẽt

 = G̃ ·

 ξt

ξt−1

+

 σmeπ 0

0 σme∆ẽ

 ·
 εme,πt

εme,∆ẽt


The corresponding transition equation, to be used in the estimation, is given as: ξt+1

ξt

 = H̃ ·

 ξt

ξt−1

+ νt+1

where the matrices G̃ and H̃ are given as:

G̃ =



ΓπH ,u + ασαΓx,u ΓπH ,u + σαΓx,u

ΓπH ,a + ασαΓx,a ΓπH ,a + σαΓx,a

ΓπH ,y∗ + ασαΓx,y∗ ΓπH ,y∗ + σαΓx,y∗

0 0

0 0

ασα
1+ϕ
σα+ϕ

σα
1+ϕ
σα+ϕ

−ασα σα+ϕ+(ω−1)ασα
σα+ϕ

−σα σα+ϕ+(ω−1)ασα
σα+ϕ

1 1

ασα σα

−ασαΓx,u −σαΓx,u

−ασαΓx,a −σαΓx,a

−ασαΓx,y∗ −σαΓx,y∗

0 0

0 0

−ασα 1+ϕ
σα+ϕ

−σα 1+ϕ
σα+ϕ

ασα
σα+ϕ+(ω−1)ασα

σα+ϕ
σα

σα+ϕ+(ω−1)ασα
σα+ϕ

0 0

−ασα −σα



T

,
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H̃ =

 H 0

I 0

 ,
and the vector νt+1 is:

νt+1 =

 Sε
0



εut+1

εat+1

εyt+1

 .
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C Supplementary Tables and Figures

Table C.7: Parameters

Parameter Definition of the parameter Parameter value

(1) Parameters that govern the distorted SOE-NK equilibrium dynamics

(1.1) Primary structural parameters

β Discount factor C-Specific (0.99 for CAN)

ρ Governs the natural rate of interest, ρ = β−1 − 1 C-Specific (0.01 for CAN)

σ Governs the curvature of the utility function 1

α Governs the degree of home bias or openness of the economy C-Specific (0.20 for CAN)

η Measures the substitutability between domestic and foreign NA

goods

ε Measures the substitutability between different home varieties 6

γ Measures the substitutability between goods produced in NA

different foreign countries

ζ Calvo-Yun parameter 0.75

ϕ Governs the Frisch elasticity of labor supply C-Specific (Estimated)

(1.2) Secondary structural parameters

ω Governs the effect of changes in the terms of trade on output, C-Specific (Estimated)

ω = σγ + (1− α)(ση − 1)

Θ Related to ω, Θ = (ω − 1) C-Specific (Comes from ω)

σα Captures the same thing as ω, σα = σ/(1− α+ αω) C-Specific (Comes from ω and α)

λ Governs the parameter that defines the slope of the Phillips curve, C-Specific (0.0858 for CAN)

λ = (1− βθ)(1− θ)/θ
κα Slope of Phillips curve, κα = λ(σα + ϕ) C-Specific (Comes from ω, λ and ϕ)

Λy,0 Intercept on the natural level of output 0

Λy,a Governs the effect of the domestic TFP on the natural level of output: 1+ϕ
σα+ϕ C-Specific (Comes from ω and ϕ)

Λy,y∗ Governs the effect of the world output on the natural level of output: −αΘσα
σα+ϕ C-Specific (Comes from ω and ϕ)

Λr,a Governs the effect of the domestic TFP on the natural interest rate: −σαΛy,a(1− ρa) C-Specific (Comes from ω and ϕ)

Λr,y∗ Governs the effect of the world output on the natural interest rate: −ϕΛy,y∗(1− ρ∗y) C-Specific (Comes from ω and ϕ)

(1.3) Parameters that govern the shock processes

ρu Persistence of cost-push shock process C-Specific (Estimated)

ρa Persistence of TFP shock process C-Specific (Estimated)

ρy∗ Persistence of world-output shock process 0.9261 (Using US output process)

σu Standard deviation of cost-push shock process C-Specific (Estimated)

σa Standard deviation of TFP shock process C-Specific (Estimated)

σy∗ Standard deviation of world-output shock process 0.0055 (Using US output process)

(2) Parameters that govern the central bank’s problem

λx Governs the relative weight that the policymaker assigns to output C-Specific (Comes from ε, λ and ϕ)

stabilization, λx = (1 + ϕ)λ/ε

x̄ Governs the output gap target 0

θ Governs the robustness concern of the policymaker C-Specific (Estimated)

(3) Parameters that govern measurement error

σmeπ Standard deviation in the measurement error of CPI inflation C-Specific (Estimated)

σme∆e Standard deviation in the measurement error of nominal C-Specific (Estimated)

devaluation plus world inflation
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Table C.8: Posterior Distributions for θ−1, Other Countries

θ−1, Median [5%, 95%]

Australia 67.9 [8.6, 179.2]

Chile 279.0 [160.9, 476.0]

Colombia 451.2 [225.0, 865.4]

New Zealand 9.2 [0.8, 56.5]

Norway 11.0 [0.9, 35.6]

South Africa 363.7 [241.1, 542.5]

South Korea 94.1 [27.6, 173.2]

Sweden 17.7 [1.19, 151.2]
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Figure C.15: Dynamic Responses of Nominal Devaluation Rate to Domestic Productivity
Shock
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Figure C.16: Dynamic Responses of Nominal Devaluation Rate to World Output Shock

(a) ρy∗ = 0
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Figure C.17: Log Posteriors, Accepted Chains

0.5 1 1.5 2 2.5

chain 10
5

450

455

460

465

lo
g

 p
o

s
te

ri
o

r
Canada, RE

0.5 1 1.5 2 2.5

chain 10
5

430

435

440

445

450

lo
g

 p
o

s
te

ri
o

r

Canada, NRE

0.5 1 1.5 2

chain 10
5

220

225

230

235

lo
g

 p
o

s
te

ri
o

r

Mexico, RE

0.5 1 1.5 2 2.5

chain 10
5

270

280

290

lo
g

 p
o

s
te

ri
o

r

Mexico, NRE

56



Figure C.18: Prior (red) and Posterior Distributions of the Structural Parameters in the RE
Model, Canada

Figure C.19: Prior (red) and Posterior Distributions of the Structural Parameters in the RE
Model, Mexico
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Figure C.20: Prior (red) and Posterior Distributions of θ−1 in the NRE Model, Canada

Figure C.21: Prior (red) and Posterior Distributions of Other Structural Parameters in the
NRE Model, Canada
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Figure C.22: Prior (red) and Posterior Distributions of θ−1 in the NRE Model, Mexico

Figure C.23: Prior (red) and Posterior Distributions of Other Structural Parameters in the
NRE Model, Mexico
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Figure C.24: Smoothed Shocks in the Estimated Models
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Figure C.25: Historical Decomposition of Observables, Canada
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Figure C.26: Historical Decomposition of Observables, Mexico
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